Inverse and Implicit Function Theorems for Nonsmooth Maps in Banach Spaces
نویسندگان
چکیده
We extend the classical inverse and implicit function theorems, the implicit function theorems of Lyusternik and Graves, and the results of Clarke and Pourciau to the situation when the given function is not smooth, but it has a convex strict prederivative whose measure of noncompactness is smaller than its measure of surjectivity. The proof of the main results requires Banach’s open mapping theorem, Michael’s selection theorem, Ekeland’s variational principle, and Kakutani’s fixed point theorem. Q 1997 Academic Press
منابع مشابه
Inverse and implicit function theorems for H-differentiable and semismooth functions
In this article, we present inverse and implicit function theorems forH -differentiable functions and semismooth functions, thereby generalizing the classical inverse and implicit function theorems to certain classes of nonsmooth functions. The classical inverse function theorem [47] asserts that a continuously differentiable function f : R → R is locally invertible at a point with a continuous...
متن کاملConvergence theorems of implicit iterates with errors for generalized asymptotically quasi-nonexpansive mappings in Banach spaces
In this paper, we prove that an implicit iterative process with er-rors converges strongly to a common xed point for a nite family of generalizedasymptotically quasi-nonexpansive mappings on unbounded sets in a uniformlyconvex Banach space. Our results unify, improve and generalize the correspond-ing results of Ud-din and Khan [4], Sun [21], Wittman [23], Xu and Ori [26] andmany others.
متن کاملA common fixed point theorem for weakly compatible maps satisfying common property (E:A:) and implicit relation in intuitionistic fuzzy metric spaces
In this paper, employing the common property ($E.A$), we prove a common fixed theorem for weakly compatible mappings via an implicit relation in Intuitionistic fuzzy metric space. Our results generalize the results of S. Kumar [S. Kumar, {it Common fixed point theorems in Intuitionistic fuzzy metric spaces using property (E.A)}, J. Indian Math. Soc., 76 (1-4) (2009), 94--103] and C. Alaca et al...
متن کاملIndicator of $S$-Hausdorff metric spaces and coupled strong fixed point theorems for pairwise contraction maps
In the study of fixed points of an operator it is useful to consider a more general concept, namely coupled fixed point. Edit In this paper, by using notion partial metric, we introduce a metric space $S$-Hausdorff on the set of all close and bounded subset of $X$. Then the fixed point results of multivalued continuous and surjective mappings are presented. Furthermore, we give a positive resul...
متن کاملOn some fixed points properties and convergence theorems for a Banach operator in hyperbolic spaces
In this paper, we prove some fixed points properties and demiclosedness principle for a Banach operator in uniformly convex hyperbolic spaces. We further propose an iterative scheme for approximating a fixed point of a Banach operator and establish some strong and $Delta$-convergence theorems for such operator in the frame work of uniformly convex hyperbolic spaces. The results obtained in this...
متن کامل